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Data transfer


1. Communication cost


2. Privacy

Solve the optimization problem
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(1) Server broadcasts the initial model
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(2) Each client updates its local model
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(3) Each client transmits
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(4) Server aggregates

(In lossless scenarios: DMA = PGA)
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Centralized Federated

Share data Share models / gradients

Pros:


1. Communication


2. Privacy

• Common assumption: clients are always available or uniform participation



Lossy Communication Channels
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Previous works: loss mitigation


• Automatic Repeat Request (ARQ)


• Forward Error Correction (FEQ) 

Our motivations


• Inevitable packet losses (e.g., retransmission failure)


• Larger training time and resource costs


• Robustness of gradient methods against limited errors

Can FL algorithms achieve optimal convergence despite packet losses?



Lossless Scenario
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Yes, if 1) Aggregate Pseudo-Gradients


                 2) Compensate for Packet Losses

3x



Aggregation for lossy channels
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Direct Model Aggregation (DMA)

Unbiased PGA (Ours)

Pseudo-Gradient Aggregation (PGA)

Unbiased DMA

1) Aggregate Pseudo-Gradients


2) Compensate for Packet Losses



Assumptions to model lossy channels
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• Loss probabilities pk differ among clients


• Independent losses among clients


• For each client, IID losses over time


• Asymmetric channels (downlink/uplink)


• If ARQ or FEQ, pk is the residual probability



asymptotically vanishing term

effect of packet loss
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Convergence Analysis

Direct Model Aggregation Unbiased Pseudo-Gradient Aggregation

(OURS)

vanishing term for small  
statistical heterogeneity

non-vanishing error due to  
stat. het. and packet loss

A joint learning and communications framework for federated learning over wireless 
networks. Chen, Mingzhe, et al. IEEE Transactions on Wireless Communications, 2021.

UPGA-PL converges to the optimal model
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N = 10 clients equally split in two groups, with                                , MNIST dataset, CNN

75 rounds

UPGA-PL matches lossless performance in < 100 rounds
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N = 10 clients equally split in two groups, with                                , MNIST dataset, CNN

+6%

UPGA-PL improves MNIST performance by 6% over SOTA
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N = 10 clients equally split in two groups, with                                , MNIST dataset, CNN

Residual errors

DMA-PL and UDMA-PL exhibit non-vanishing errors



• UPGA-PL has optimal convergence under asymmetric lossy channels


• UPGA-PL outperforms SOTA by filtering out losses


• UPGA-PL approaches ideal lossless channels with slightly slower convergence

Conclusions
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Thank you for your attention!

Web Code


