The multiple facets of
Variance Reduction in
Federated Learning

Context

Federated Learning (FL) allows decentralized machine
learning model training on client devices (e.g., smartphones)

E.g., emoji suggestions
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Proposed Solution

A convex combination of "fresh" gradients from participating
clients and "stale" gradients from non-participating ones
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By leveraging stale gradients for non-participating clients,
FedStale acts as variance reduction method

FedStaIe Zﬁ _I_ Z
ieplt
0. Trajectories 0. Trajectories Convergence
FedAvg global optimum FedStale global optimum _
B=0) 2 (B=0.38) & 103
5- 5 o f
(©
(@)
=
s 0 0 g o0 = 102
g /
= - = FedAvg (B =0)
=9 = © lor. ™ FedVARP (B=1) =
FedVARP FedVARP . = FedStale (8 =0.8)
(B=1) (B=1) | =
~10- . . ~10- . . . . . . .
-10 -5 0 5 10 -10 -5 0 5 10 0O 1000 2000 3000 4000
W1 W1 Global round

Related Work

FedVARP et al. [3-5] assume homogeneous client participation
with a fixed 3 = 1 (equal weight to fresh and stale gradients)

Theoretical Guarantee

Analyzing FedStale convergence, we find stale gradient weight
depends on client data and participation heterogeneity

Guideline A: increase stale gradient weight (5)
with higher data heterogeneity

Guideline B: decrease stale gradient weight (5)
with higher participation heterogeneity (pavg/Pmin)

Experiments
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