The multiple facets of Variance Reduction in Federated Learning

Angelo Rodio

Inria, Université Côte d'Azur angelo.rodio@inria.fr

Proposed Solution

A convex combination of <u>"fresh" gradients</u> from participating clients and <u>"stale" gradients</u> from non-participating ones

Client 2 is inactive

Client 2 is active

By leveraging stale gradients for non-participating clients, FedStale acts as variance reduction method

Context

Federated Learning (FL) allows decentralized machine learning model training on client devices (e.g., smartphones)

Related Work

FedVARP et al. [3-5] assume homogeneous client participation with a fixed $\beta = 1$ (equal weight to fresh and stale gradients)

- Each client computes $\mathbf{g}_i^{(t)} \leftarrow \text{ClientOpt}(\mathbf{w}^{(t)}, \mathcal{D}_i)$
- Server computes $\Delta^{(t)} = \frac{1}{N} \sum_{i} \mathbf{g}_{i}^{(t)}$, $\mathbf{w}^{(t+1)} \leftarrow \text{ServerOpt}(\mathbf{w}^{(t)}, \Delta^{(t)})$

Communication efficiency Data privacy

Problem

Data heterogeneity (Client 1: "sad", Client 2: "happy")

Client participation heterogeneity (The "happy" client partakes less in training)

<u>1) Bias in favor of the "more participating" client</u>

Theoretical Guarantee

Analyzing *FedStale* convergence, we find stale gradient weight depends on client data and participation heterogeneity

<u>Guideline A:</u> increase stale gradient weight (β) with higher data heterogeneity <u>Guideline B:</u> decrease stale gradient weight (β) with higher participation heterogeneity (p_{avg}/p_{min})

Experiments

	1.0 -	β=1.0	β=0.8	β=0.8	β=0.8	β=0.5	β=1.0	β=0.8	β=0.2	
heity	0.8 -	β=1.0	β=0.8	β=0.8	β=0.8	β=0.5	β=0.5	β=0.5	β=0.2	
oger	0.6 -	β=1.0	β=0.8	β=0.8	β=0.5	β=0.5	β=0.5	β=0.5	β=0.0	

 β -value yielding the highest test accuracy on the MNIST dataset

(E.g., "I am feeling awesome! 😭 ")

Solution [1, 2]:

FedAvg [1, 2] exhibits sub-optimal trajectories and slow convergence

•										
ca	β=0.5	β=0.2	β=0.2	β=0.2	β=0.5	β=0.8	β=0.8	β=1.0	0.4 -	hete
pe	β=0.2	β=0.0	β=0.0	β=0.0	β=0.2	β=0.8	β=0.8	β=1.0	0.2 -	Data
	β=0.0	β=0.0	β=0.0	β=0.0	β=0.0	β=0.2	β=0.2	β=0.8	0.0 -	
	250	100	50	25	10	5	3	1.5		
	Participation heterogeneity (p _{avg} /p _{min})									

Stale gradients n improve or hurt rformance based on client data nd participation heterogeneity

References

[1] McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data." In AISTATS, 2017. [2] Wang et al. "A Unified Analysis of Federated Learning with Arbitrary Client Participation." In NeurIPS, 2022. [3] Jhunjhunwala et al. "FedVARP: Tackling the Variance Due to Partial Client Participation in Federated Learning." In UAI, 2022. [4] Gu et al. "Fast Federated Learning in the Presence of Arbitrary Device Unavailability." In NeurIPS, 2021. [5] Yan et al. "Federated Optimization Under Intermittent Client Availability." In ACM INFORMS, 2024.